珠江源头区小流域生态经济系统建设及评价

李 靖

(云南农业大学工程技术学院°昆明市°650201)

摘 要 西山小流域位于珠江源头区,因长期掠夺性开发利用,使流域基础结构脆弱,生态环境日趋 恶化。应用生态经济学原理,针对当地自然资源状况和生产特性,采取工程、生物和技术等措施,建 成综合网状防治体系,通过优化配置,调整生产结构,获得了较好的生态经济和社会综合效益,为山 区小流域生态经济的可持续发展提供了较好模式。 中图分类号: S157.2 关键词: 生态经济系统 综合治理 效益

Construction and Assessment of Ecological and Economic System at Source Areas of Pearl River

Li Jing

(Faculty of Engineering and Technology, Yunnan Agricultural University, Kunming, 650201, PRC)

Abstract Xishan small basin is located in the source of Pearl river, influenced by social and economic activities of man-kind, the eco-environment of it had been deterioated gradually. Through five years sustained construction, a comprehensive harness system has been set up, and the marked benefits of economy, ecology and society have been achieved by applying eco-economic principle and systematic project, adjusting constructure, utilizing natural resources fully. This is a good type for sustainable development of eco-economic system in mountain areas.

Keywords: eco-economical system; comprehensive harness; benefits

珠江源头区西山小流域作为珠委水土保持重点防治工程,经过5a综合治理,以生态学和 经济学理论为指导,通过合理配置工程措施,充分利用自然资源,加强流域内物质、能量的多层 次循环利用,改善生态环境,推动生产发展,取得了良好的经济、生态和社会效益,为区域可持 续发展进行了有益探索。

1 流域自然经济概况及存在的主要问题

1.1 流域基本概况

西山小流域位于云南省曲靖市郊,是南盘江一级支流区,总面积为27.8 km²,海拔1 887.9 ~2 165.5 m,流域地势由北向南倾斜,具有较典型的高原地貌特征,流域多年平均降水量 1 037.3 mm,年平均气温为 14 $^{\circ}$ ~ 15 $^{\circ}$,积温 3 865 $^{\circ}$,日照时数为 2 100 h/a,属亚热带暖温 带混合性山地季风气候,流域内天然植被稀疏,牧草资源较贫乏。 流域内土壤以红壤土和黄红壤土为主,土性僵板,胶粘性强,渗水性差,水土流失现象严重,治理前流域水土流失面积达 22.5 km²,以面蚀为主,重力侵蚀活跃,年平均侵蚀模数高达 2160 t/km²。当地经济落后,农民生活处于维持温饱水平。

存在主要问题

1.2.1 植被稀少,水土流失严重 由于长期近似掠夺性开采,使原本就稀少的植被急剧减少, 土壤侵蚀加剧。治理前森林覆盖率仅为11.8%,牧草资源极少。随着人类活动增加,裸露荒地 面积呈增长趋势,使流域内水土流失面积占总面积82.1%,年流失土壤6.0万t,有机质减少, 土壤肥力急剧减退。

1.2.2 土地利用结构比例失调 流域内耕地较少,坡耕地占 78.3%,林草地稀少,又主要实 行单一粮食经营,光能利用率差,保水保肥性能差,土地生产力极低,流域内农林牧经济结构畸 形,难以形成区内林、草、畜、肥的合理动态平衡,加之粗放的耕作方式和低下的栽培水平,使流 域发展缺乏后劲。

2 流域综合治理与生态经济系统建设

2.1 流域治理规划原则

根据生态经济学和系统工程理论,结合西山小流域特点,确定治理规划的指导思想是:遵 循资源开发与环境相协调,多层次优化利用资源。规划原则是:综合规划,统一治理,优化配 置,全面发展。

流域在治理过程中注重将工程措施和生物措施相结合,物质投入和技术投入相结合,充实 丰富生态位,确定了以治水改土,绿化荒山,控制水土流失为重点,以发展经济作物和粮食为中 心,发展生态经济为突破口,尽量做到对有机物质的多层次循环利用,缩短可再生资源的再生 周期,提高自然资源利用率。

2.2 治理措施

根据山地海拔高度不同,小流域治理分3个层带进行。应用生物学、林学和工程学方法, 营造多种形式和结构的综合防治体系。(1)流域上部植被稀少,土壤瘠薄,岩石裸露,这一层 带以种植水保林,造林种草为主,进行封禁封管。因地制宜,注重防护林、经济林和草场配置, 构成防治体系的第一道防线。(2)流域腰部地带耕作层相对较厚,过去频繁的人畜活动导致 植被稀疏,水土流失严重,局部崩塌,剥蚀强烈。对这一层带面积较集中地区实行坡改梯,采用 反坡梯田整地,配置道路、梯田排洪沟渠。在背风阳坡或半阳坡发展集中成片果园,种植玉米、 油料。梯田地埂种植花椒等经济作物。对于局部坡度大于 25°的原坡耕地及荒坡,实行退耕还 林和荒坡造林,尽量就地拦蓄接纳降水,形成第二道防线。(3)流域下游土壤较厚的中、下坡 沟川地,利用深厚土层保墒抗旱,通过工程整治形成梯田。坝头地和灌溉畦田,修建拦水埂利 于保水保土保肥,种植烤烟、玉米、油料等作物。在村庄、房屋、道路两旁种植树木,鼓励发展庭 院经济,种植经济作物,饲养牲畜,建设沼气池,推广节能炉灶,构成防治体系最后一道防线。

流域水土流失的沟谷坝地,沟岸扩张强烈,崩塌严重,采取自上而下修建谷坊、拦沙坝、截 水沟等缓水拦沙、留淤、蓄水工程措施,通过层层控制、节节拦蓄,使其小多成群,组成串珠式条 带状防治体系,控制沟道下切,拦蓄径流泥沙,从而大大减少崩岗现象发生。

通过上述措施的综合整治,整个流域形成了上、中、下三层次横向条带和拦坝挡墙的纵向 网状防治体系,各项措施镶嵌配套,一个立体综合开发利用的小流域经济体系初步形成。

2.3 治理成效

西山小流域经过 5 a 连续性综合治理,治理面积达 920 hm²,其中人工造林 658 hm²,发展 经济果林 100 hm^2 , 修建水平梯田 160 hm^2 , 修建石坝 14座, 拦沙坝 24座, 平砌石挡墙 2座, 环 山公路4条,长7.2km,小二型水库1座,流域治理程度达76.8%。综合防治措施的科学配 置, 有效地控制了水土流失现象, 流域森林覆盖率由治理前 11.8%提高到 64.3%, 使流域内年 平均侵蚀模数减少了 70%,下降为 670 t/km²,山地十壤持水量大大增加,治沟拦蓄工程可增 蓄水量 60 万 m³。在综合整治基础上,结合当地自然条件和生产特性,运用生态经济学基本原 理和方法,优化调整农业生产结构,推广运用先进农业生产技术,区内的农林牧用地比例由治 理前的70.4 [;]23.4 [;]6.4 调整为56.2 [;]33.6 [;]10.2。在农业用地比重减少同时,加大科技投入,实 行带状间作、轮作、推行地膜覆盖栽培、种植优质高产作物品种。 在提高植被覆盖率的同时提 高单位面积产量,调整粮食种植面积比例,扩大豆类及油料等经济作物面积,发展畜牧养殖业, 充分体现了山区小流域农业建设以生态效益为主,发展优势项目,提高产品商品率的指导思 想,使土地利用结构趋于合理,资源的利用率和生产率明显提高。

生态经济系统综合评价 3

3.1 生态效益

通过5 a 综合整治, 西山小流域作为一个独立的农业生态经济单元, 森林覆盖率上升为 64.8%,草场植被的生产能力明显提高,地表蓄水能力增强,十壤侵蚀明显减小,十壤耕作层中 有机质含量增加 1.1%,自然资源综合利用率和商品率提高,生态环境质量显著改善,流域生 态环境承载力大大增强。

3.2 经济效益

流域的综合治理使农业生产稳步增长,林业生产取得突破性进展,商品率明显提高,牧业 经济也有了较快发展,使流域人均纯收入由治理前的 529 元提高到 734 元,农作物产量提高 20% ~40 %, 经济作物产量提高 30% ~50 %, 果品产量提高 30% ~60%, 取得了较好的经济效 益,随着经济果林逐渐步入成熟期,经济收入必将进一步提高(见表 1)。

3.3 社会效益

表 1 西山流域主要经济指标变化对比

流域综合治理和开发利		份	人均产值	人均纯收入	人均产粮	玉米单产	烤烟单产
用使当地综合生产力得到提	- 4 -		(元/人)	(元/人)	(kg/人)	(kg/hm^2)	(kg/hm^2)
高、经济收入增加、人民生活	1990		612	529	231	6750	1 800
	1995		891	734	265	8 4 3 0	2 5 2 0
水平明显提高,科技投入和	增长率	(%)	45.5	39.7	14.7	24.9	40.0
培训力度得到重视和加大,							

科技文化素质提高,市场观念增强,生态意识初步树立,山区植被得到保护,农业生态环境有较 大改观,当地精神文明建设有了保障和支撑。

结 语 4

西山小流域生态经济体系建设,调整了农业生产结构,改善和协调了产业发展中的不平衡 关系。通过建设综合防护体系,从根本上解决了基岩山区小流域治理开发问题。采取果粮间 种、果菜间种等方式充实丰富了生态位,提高了资源利用率。发展畜牧业及庭院经济延长健全

(下转第65页)

态环境重建工作。对长期闲置不用的非农建设用地,或复耕或进行植被覆盖。对于工程建设 备用地,如果短期内无法上马,也应采取临时性绿化措施。因开山取石、挖山取土所造成的裸 露及支离破碎的山体,应加快植被的恢复和山体的修复工作。同时扩大自然保护区的数量和 面积,合理调整自然保护区的结构和类型,使城市生态得以良性循环。

4.3 水土保持的工程措施

控制水土流失除采用生态方式外,也应采取适当的工程措施,特别是对一般生态防护措施 难以奏效的区域,如水土流失强度大的建筑工地,应根据具体情况采取坡面台地、护坡墙改善 地面排水等工程措施来控制水土流失。建设项目中水土保持所需的建设经费,应列入建设项 目工程的概预算,水土保持设施也应做到与主体工程同时设计,同时施工,同时竣工验收。

4.4 加强水土保持管理与监督

为从根本上遏制水土流失继续恶化的趋势,应制定完善的水土保持法律法规,加强管理, 科学规划,防治性治理与开发性治理相结合。对可能引起水土流失的新开发项目,必须先提交 水土保持方案,经有关主管部门审批同意后方可动工。对造成严重水土流失而又不进行治理 的建设开发单位及个人,应根据有关规定,依法对其进行处理和处罚。水土保持主管部门应在 贯彻水土保持治理的同时,加强对水土保持的管理与监督,并做好水土流失的动态监测工作, 从而为城市的建设和发展创造良好的生态环境。

参考文献

1 陈新. 国土资源谁来珍惜你. 城市开发, 1996(10): 13~16

2 杨军. 深圳城市化的环境水利问题. 广州环境科学, 1996(3): 1~3

郝天文, 男, 35岁, 1987年毕业于哈尔滨建工学院市政与环境工程系, 同年获得硕士学位, 现任高级工程师。目前从事城市给水排水、环境保护方面的规划、设计及研究, 在10多a的工作期间完成城市规划、设计、研究项目近20多项, 发表和交流论文5篇。

(上接第55页)

食物链,使系统物质流与能量流的流动有机结合,增加系统的稳定性和自我发展能力。科技投入的加强和能量物质的合理分配,有效地克服了各子系统不利因素对生产发展的限制,使系统 在一个新的更高层次上达到动态平衡。

流域生态经济系统的建设,增强了农业经济持续发展功能,生态承载力大大提高,促进了 区域持续健康发展。西山小流域建设成果表明:一个结构趋于合理,社会、生态、经济效益相协 调的生态经济系统已初步建成。

参考文献

1 孙立达,孙保平.小流域综合治理理论与实践.北京:中国科学技术出版社,1992

2 王松霈, 迟维韵. 自然资源利用与生态经济系统. 北京: 中国环境科学出版社, 1992