测定溅蚀的方法研究

陈一兵

(四川省农业科学院土壤肥料研究所・成都市・610066)

提要

该研究采用人工降雨装置在相同的条件下,对 5 种测定溅蚀的方法进行了对比分析,得出:1. 不同的方法测定出的溅蚀量有显著的差异;2. 不同的方法对溅蚀量与降雨历时的关系影响显著;3. 当适合于实验室的 Ellison 溅蚀杯法应用于野外时,应倍加小心。

关键词: 溅蚀 测定溅蚀的方法

Studies of Field Rainsplash Measurement Techniques

Chen Yibing

(Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 610066)

Abstract

Five techniques for measuring rainsplash were studied under the same condition using rainfall simulator. The results show that different rainsplash measurement methods significantly affect detachment amount; the methods influence greatly the relaitonship between splash detachment and time of exposure; when laboratory based method is used in the field, caution must be taken.

Key words rainsplash rainsplash measurement method

早在 1877 年,Wollny^[1]就论述了雨滴使土粒分散,细小颗粒填充土壤孔隙使土表封闭,从而降低其渗透性。而 Ellison^[2]则将土壤侵蚀分为四个阶段,即:1. 雨滴对土壤的溅蚀;2. 径流的溅蚀;3. 雨滴对溅蚀产生的土粒的搬运;4. 径流对土粒的搬运。从 Ellison 的侵蚀过程看,溅蚀是土壤侵蚀的第一步,也是非常重要的侵蚀过程。目前有许多种方法测定土壤溅蚀,但由于不同的研究者使用的供试面积、雨强、土壤、坡度和降雨时间不一样,因此其结果很难有可比性。本试验的目的就是用人工降雨装置在相同的条件下,对 5 种测定溅蚀的方法进行对比研究,对测定溅蚀的方法提出建议。

一、试验方法

试验选择 5 种测定溅蚀的方法进行研究,它们是:Ellison 溅蚀板^[3]、Ellison 溅蚀杯^[4]、Bollinne 漏斗与瓶^[5]、Morgan 溅蚀杯^[5] 和改进型 Ellison 溅蚀板^[7]。处理分两种:一是选择代表热带降雨强度的 100mm/h 和 140mm/h 两种雨强,降雨 10min,以了解雨强对溅蚀量的影响;另一

处理是在 100mm/h 雨强下降雨 5min、10min 和 20min,研究不同降雨历时对溅蚀的作用。每一组合处理降雨重复 3 次,降雨覆盖面积为 3m×3m,溅蚀测定装置安放在供试小区中心,器口高出地面 5mm,以防径流流入器内。Ellison^[4]在研究溅蚀时发现在 168mm/h 雨强下,土壤颗粒溅蚀的最远距离为 1.5m。因此,本试验小区面积符合产生和收集最大溅蚀量的要求。

表 1 供试土壤性状

	机械组	有机质(g/kg)	pН		
炒	粉纱	粘粒	质地		
65. 8	20.3	13.9	沙壤土	4.1	5. 5

在 Ellison 溅蚀杯中装入烘干土并称重, 然后将溅蚀杯放入浅层水中使土壤达饱和状态;对其它方法则是在试验前降雨几分钟使 土壤表层 4~5cm 土壤湿润,以基本消除土

壤水分对试验结果的影响,然后再安装测定器具。

表 2 降雨装置设计参数

压力	11年31年11日	喷头角度	臂长	设计雨强	实际雨强
(PSi)	喷头型号	(°)	(cm)	(mm/h)	(mm/h)
20	1/2HH-40	45	18	100	103. 35
30	1/2HH-40	45	18	140	140.67

供试土壤为白垩纪下层砂岩发育的土 - 壤,其性状见表 1。

供试小区为裸地,坡度为 3°,试验前 只除草,不进行耕作。

试验用的降雨装置各参奴见表 2。

第一处理选择 10min 是为了避免器口以及器内积水太多对试验结果产生较大影响。每一次降雨过程后,对收集到的泥水进行过滤(Ellison 溅蚀杯法除外),在 105℃下烘干 12h 称重。对 Ellison 溅蚀杯法,是在饱和前对其杯和泥沙烘干、称重。降雨过后又对其杯和泥沙烘干称重,二者的差值为溅蚀量。

本试验对 Ellison 溅蚀板、Morgan 溅蚀杯和改进型 Ellison 溅蚀板法所收集到的泥沙进行坡上部和坡下部分别计量。

二、试验结果分析

(一)不同方法的溅蚀量

不同方法的溅蚀试验结果见表 3。从表 3 见 Ellison 溅蚀杯法在两种雨强下产生的溅蚀量都最高;而改进型 Ellison 溅蚀板在两种雨强下产生的溅蚀量都最低。所有的方法都显示出溅蚀量随着雨强的增大而增加。

雨强(mm/h) 方 法 重复(次) 溅蚀量 mg/(cm²·min-1) 1.71 Ellison 溅蚀板 1.97 3.42 3 1 60.03 Ellison 溅蚀杯 2 58.93 3 73.04 1 1.81 100 Bollinne 漏斗与瓶 4.37 3 4.13 1 4.74 Movgan 溅蚀杯 1.47 2 3 6.21 1.60 1 改进型 Ellison 溅蚀板 2 1.60 1.67

表 3 不同方法的溅蚀量

续表3

雨强(mm/h)	方 法	重复(次)	溅蚀量 mg/(cm²・min-1)
	Ellison 溅蚀板	1 2 3	3. 88 4. 93 3. 03
	Ellison 溅蚀杯	1 2 3	60. 34 54. 86 75. 86
140	Bollinne 漏斗与瓶	1 2 3	3. 97 8. 11 8. 15
	Movgan 溅蚀杯	1 2 3	10. 61 13. 51 8. 92
	改进型 Ellison 溅蚀板	1 2 3	2. 33 3. 13 2. 40

表 4 方差分析表

项目	平方和	自由度	均方	F
雨强	45.03	1	45.03	2. 24
方法	472.50	4	118. 13	5.87**
交互	46.15	4	11.54	0. 57
剩余	402.31	20	20.12	
总计	465.99	29	194.82	

注:** 1%显著水平。

方差分析结果(见表 4)表明:不同的方法对溅蚀量产生极显著的影响,而雨强和方法与雨强的交互作用 F 值未达极显著水平。

(二)不同降雨时间对单位溅蚀量的影响

从不同降雨时间对溅蚀量的影响来看(表 5), 在所有三个时段内, Ellison 溅蚀杯产生的溅蚀量还 是最大,而改进型 Ellison 溅蚀板最小。但所有的方 法随时间的增加其产生的单位溅蚀量减少。

表 5 溅蚀量 mg/(cm²·min-1)与时间的关系

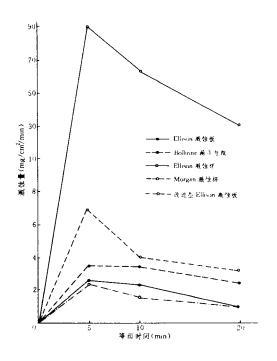
			. 0.			
时间(min)	重复(次)	Α	В	С	D	E
5	1	2. 50	138. 87	3. 02	8. 13	2. 13
	2	3. 29	31. 66	3. 97	5. 87	2. 27
	3	2. 11	99. 37	3. 50	6. 99	2. 80
10	1	1. 71	60. 03	1. 91	4. 74	1.60
	2	1. 97	58. 93	4. 37	1. 47	1.60
	3	3. 42	73. 04	4. 13	6. 21	1.67
20	1	0. 99	26. 88	2. 23	2. 31	0. 97
	2	0. 86	37. 62	2. 94	4. 29	1. 17
	3	1. 09	25. 86	2. 34	3. 39	1. 00

注:A-Ellison 濺蚀板;B-Ellison 濺蚀杯;C-Bollinne 漏斗与瓶;D-Morgan 溅蚀杯;E-改进型 Ellison 溅蚀板。 表 6 方差分析结果

	•			
项目	平方和	自由度	均方	F
时间	137 2 . 81	2	686. 41	3. 37°
方法	24648. 29	4	6162.07	30. 25**
交互	4062.40	8	507.80	2. 94
剩余	6111.15	30	203. 71	
总计	10483. 95	44	790.61	

注: * 5%显著水平; * * 1%显著水平。

从方差分析结果表明(表 6):降雨时间和降雨时间与方法的交互作用达显著水平,而方法对溅蚀量的影响达极显著水平。


从附图中单位溅蚀量对降雨时间的变化趋势可知,所有的方法在5min时都有一个峰值,然后随时间的增长单位溅蚀量或快或慢的开始下降,直到20min降雨结束时还在下降。

(三)净搬运量

对 3 种方法的净搬运量进行了试验,其结果见表 7。总体来看,三种方法的搬运比(坡下量比坡上量)随着雨强的增大而增加,Ellison 溅蚀板法的搬运比最高,在 100mm/h 和 140mm/h 雨强下其搬运比分别为 1.73 和 2.47。但搬运比对降雨时间没有明确的关系。

三、讨论

Ellison 溅蚀杯法与其它方法的溅蚀量产生较大差异的原因可能有三点:1. Ellison 溅蚀杯边缘对溅蚀量影响较小,在试验中发现其土壤表面只比杯边缘低 3mm 左右,而其它方法在安装时器口就比土面高出 5~7mm,以防径流进入器内。Mazurak 和 Mosher^[8]在研究中发现如土表高出杯缘 5mm 以上时,杯缘将对溅蚀量产生较大影响;2. Ellison 溅蚀杯中装入的是烘干土,杯中土壤无结构且松散。因此土壤团聚性差,土粒之间胶结能力弱。在这方面 Woodburn^[9]的发现是在实验室

附图 溅蚀量与降雨时间的关系

用过筛土样进行溅蚀实验,其溅蚀量大于自然土体产生的溅蚀量;3. Ellison 杯中产生的薄层水将增加雨滴的溅蚀能力。Palmer^[10]也证实了这一点,他认为土表的薄水层实际上增加了雨滴的溅蚀量。

雨 强	方 法	净搬运量	搬运比	降雨历时	方 法	净搬运量	搬运比
(mm/h))J ((g)	MX	(min)	方 法	(g)	加及巴
	Ellison 溅蚀板	0.08	1. 73		Ellison 溅蚀板	0.00	
100	Morgan 溅蚀杯	-0.03	_	5	Morgan 溅蚀杯	0.05	1. 28
	改进型 Ellison 溅蚀板	0. 03	1.30	_	改进型 Ellison 溅蚀板	-0.07	_
	Ellison 溅蚀板	0. 22	2. 47		Ellison 溅蚀板	0.06	1.42
140	Morgan 溅蚀杯	0.14	1.40	20	Morgan 溅蚀杯	0.07	1.32
	改进型 Ellison 溅蚀板	0. 13	2. 18		改进型 Ellison 溅蚀板	0.17	3. 13

表 7 不同雨强和降雨时间的净搬运量和搬运比

Ellison 溅蚀板、Bollinne 漏斗与瓶、Morgan 溅蚀杯和改进型 Ellison 溅蚀板都是野外溅蚀测量装置,它们测定出的溅蚀量非常接近,而且都与 Ellison 溅蚀杯测定出的溅蚀量差异显著。因此,将适用于实验室的装置(Ellison 溅蚀杯)运用到野外时应倍加小心。

从表 5 和附图中看出,在前 5min 时段内,所有 5 种方法单位溅蚀量随时间的增长而迅速增加,并达顶峰。Ellison¹⁺ 在研究溅蚀时发现降雨后 2~3min 内单位溅蚀量最大,然后下降。他认为这是由于结皮的缘故。而 Epstein 和 Grant 则认为单位溅蚀量最大值发生在降雨后 10min,然后迅速下降。从本研究看,单位溅蚀量 5min 达顶峰后开始下降,但不同的测定方法其单位溅蚀量下降的快慢不一样。Ellison 溅蚀杯、Morgan 溅蚀杯的单位溅蚀量 5min 达顶点后迅速下降,而Bollinne 漏斗与瓶、Ellison 溅蚀板和改进型 Ellison 溅蚀板的单位溅蚀量达顶点后则缓慢下降。造

成这种现象的原因可能是 Ellison 溅蚀杯和 Morgan 溅蚀杯的受溅蚀面较小,其结皮、封闭的时间要比其它 3 种方法(溅蚀面积 $3m \times 3m$)短。

从表 7 可见,搬运比的变幅为 1. 28~3. 13,这与 Gorchichko^[11](搬运比为 1. 5)和 Ellison^[4] (搬运比为 3. 1)的研究相近。总体来看,净搬运量和搬运比与雨强或降雨历时之间没有相关性。

四、结论

本研究可初步得出以下结论:

- 1. 不同的方法其单位溅蚀量差异显著。在 100mm/h 和 140mm/h 两种雨强下,Ellison 溅蚀杯产生的溅蚀量最大,改进型 Ellison 溅蚀板最小。不同的方法对溅蚀量与降雨历时的关系影响显著。
 - 2. 三种方法搬运比的变幅为 1. 28~3. 13。
 - 3. 当适合于实验室的 Ellison 溅蚀杯法应用于野外时,应倍加谨慎。

参考文献

- [1] Wollny, E. Der Einfluss Der Pflanzendecke Und Beschattung Auf Die Physikalischen. Eigenschaften Und Die Fruchtbarkeit Des Bodens. Berlin, P171-174, 1877
- [2] Ellison, W. D. Soil Erosion Studies-Part I. Agri. Eng. 28, P145-146, 1947
- [3] Ellison, W. D. Two Devices for Measuring Soil Erosion. Agri. Eng. 25, P53, 55, 1944
- [4] Ellison, W. D. Studies of Raindrop Erosion Agri. Eng. 25, P131-136, 181-182, 1944
- [5] Bollinne, A. La Mesure de L'intensite du Splash Sur Sol Limoneux. Mise au Point d'une Technique de Terrain et premiers Resultals. Pedologie 25, P199-210, 1975
- [6] Morgan, R. P. C. Field Studies of Rainsplash Erosion. Earth Surf. Proc., 3, P295-298, 1978
- [7] Carson, A. and Kirkby, M. J. Hillslope Form and Process. Cambridge University Press, P200, 1972
- [8] mazurak.A. and Mosher.P. Detachment of Soil Particles in Simulated Rainfall. Soil Sci. Soc. Amer. Proc. 32, P716-719,1968
- [9] Woodburn, R. The Effect of Structural condition on Soil Detachment by Raindrop Action. Agri. Eng. 29, P154-156,1948
- [10] Palmer, R. S. Waterdrop Impact Forces. Trans of ASAE.8(1), P69-70, 72, 1965
- [11] Gorchichko, G. K. Device for Determining the Amount of Soil Splashed by Raindrops. Soviet Soil Sci. 8, P610 -613, 1977