2013—2023年三峡库区巴东县植被覆盖度时空变化及驱动力分析
DOI:
作者:
作者单位:

水利部长江勘测技术研究所

作者简介:

通讯作者:

中图分类号:

基金项目:

水利部重大科技项目(SKS-2022082)


Spatiotemporal Variations and Driving Forces of Fractional Vegetation Coverage in Badong County, Three Gorges Reservoir Area During 2013—2023
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    [目的]植被覆盖度能直观表征区域生态环境状况,开展其时空变化研究以及揭示驱动力机制,对区域植被恢复和生态保护具有重要的现实意义。[方法]本研究基于MODIS NDVI数据,分析2013-2023年巴东县植被覆盖度时空变化规律,探讨基于地形、地质、气候等影响因子的植被覆盖度分异特征,并运用地理探测器和随机森林模型探究主导因子及交互效应。[结果]①2013-2023年间,巴东县植被覆盖度整体较高,以0.0017·a?1的速率呈波动增长趋势;②基于不同影响因子的植被覆盖度分异特征明显,植被覆盖度与高程、坡度、年降水量分布变化呈正相关,与年均气温负相关,且受坡向、地层岩性、植被类型、土壤类型等因子分布影响;③通过地理探测器探测到高程、年均气温为主要驱动因子,解释力均在40%以上,地层岩性、地貌类型、年降水量为次级因子,且多因子交互表现为协同增强效应,高程与地层岩性的联合解释力达到55%;随机森林模型进一步验证了主导因子重要性排序:高程>年均气温>地层岩性>年降水量。[结论]地理探测器与随机森林模型共同揭示高程为核心驱动因子,年均气温、地层岩性、年降水量次之,研究成果可为生态脆弱区植被恢复评估与生态安全格局优化提供理论支撑。

    Abstract:

    Abstract:[Objectives]Fractional vegetation coverage(FVC) serves as a direct indicator of regional ecological conditions. Investigating its spatiotemporal variations and driving mechanisms holds significant practical value for vegetation restoration and ecological conservation.[Methods]Based on MODIS NDVI data, this study analyzed the spatiotemporal dynamics of vegetation coverage in Badong County from 2013 to 2023. It explored differentiation characteristics of vegetation coverage influenced by topography, geology, climate, and other factors. Geodetector and random forest models were employed to identify dominant factors and interaction effects.[Results]① From 2013 to 2023, vegetation coverage in Badong County exhibited a fluctuating upward trend at a rate of 0.0017·a?1, with overall high coverage levels. ② Fractional vegetation coverage showed distinct differentiation across influencing factors: it correlated positively with elevation, slope, and precipitation, but negatively with temperature. It was also influenced by lithology, aspect, vegetation type, and soil distribution. ③ Geodetector analysis identified elevation and temperature as primary drivers (explanatory power >40%), while lithology, geomorphological type, and precipitation were secondary factors. Multi-factor interactions demonstrated synergistic enhancement, with elevation and lithology jointly explaining 55% of variation. Random forest model further validated the importance ranking of dominant predictors: elevation > temperature > lithology > precipitation.[Conclusions]Both geodetector and random forest models highlight elevation as the core driver, followed by temperature, lithology, and precipitation. This study provides theoretical support for vegetation restoration assessment and ecological security optimization in ecologically fragile regions.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-04-28
  • 最后修改日期:2025-06-13
  • 录用日期:2025-06-17
  • 在线发布日期:
  • 出版日期: