顾及样本优化与深度特征提取的滑坡易发性评价
DOI:
作者:
作者单位:

重庆交通大学

作者简介:

通讯作者:

中图分类号:

P642.22

基金项目:


Landslide Susceptibility Evaluation Considering Sample Optimization and Deep Feature Extraction
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    摘 要:[目的]为解决滑坡易发性评价中缓冲区采样策略选取的非滑坡样本可能孕育滑坡风险,以及大部分评价模型在特征提取方面不彻底导致评价精度较低的问题,[方法]本文在缓冲区采样策略的基础上提出了一种基于卷积自编码器(Convolutional Auto-Encoder,CAE)的非滑坡样本优化方法。该方法通过学习滑坡样本的特征,利用重构误差筛选和优化非滑坡样本。在评价模型方面,引入卷积注意力模块(Convolutional Block Attention Module,CBAM)到残差网络(ResNet)中,构建ResNet-CBAM滑坡易发性评价模型,以捕捉更深层次、更复杂且更具代表性的特征。实验以三峡库区万州区为研究区域,选取高程等12个影响因子,采用SVM、DNN、CNN和ResNet-CBAM四种模型,对缓冲区采样和基于CAE优化采样的评价精度和结果进行对比分析。[结果]结果表明:在相同评价模型下,基于CAE优化的非滑坡样本采样策略具有更高的可靠性与准确性;在相同采样策略下,ResNet-CBAM模型在准确率、精确率、召回率、F1分数和AUC等指标上均优于其他模型;各模型的评价结果具有相似性,高易发区和极高易发区主要分布在长江沿岸等植被覆盖度低、人类活动频繁的区域,使用了基于CAE优化采样的ResNet-CBAM模型表现出更优的预测效果,更适宜于该区域的滑坡易发性评价研究。[结论]基于CAE优化的非滑坡样本采样策略和ResNet-CBAM评价模型能有效提高滑坡易发性评价的精度,该研究方法和实验结果可为万州区的滑坡防控工作提供理论支持和科学指导。

    Abstract:

    Abstract: [Objective] In order to address the issue that non-landslide samples selected using the buffer zone sampling strategy in landslide susceptibility evaluation may still harbor landslide risks, as well as the problem that most evaluation models lack thorough feature extraction, resulting in low evaluation accuracy, [Methods] This paper proposes a non-landslide sample optimization method based on Convolutional Auto-Encoder (CAE), built upon the buffer sampling strategy. The method optimizes the non-landslide samples by learning the fea-tures of landslide samples and utilizing reconstruction errors. For the evaluation model, the Convolutional Block Attention Module (CBAM) is integrated into the Residual Network (ResNet) to construct the Res-Net-CBAM landslide susceptibility model, capturing deeper, more complex, and more representative features. The experiment uses Wanzhou District in the Three Gorges Reservoir as the study area, selecting 12 influencing factors, such as elevation. Four models—SVM, DNN, CNN, and ResNet-CBAM—are employed to compare and analyze the evaluation accuracy and results of buffer zone sampling versus CAE-based optimized sam-pling.[Results] The results show that, under the same evaluation model, the CAE-based optimization sampling strategy for non-landslide samples yields higher reliability and accuracy. Under the same sampling strategy, the ResNet-CBAM model outperforms the other models in terms of accuracy, precision, recall, F1 score, and AUC. The evaluation results are similar across models, with high and very high susceptibility areas predominantly located in regions with low vegetation cover and frequent human activities, such as along the Yangtze River. Moreover, the ResNet-CBAM model with CAE-based optimized sampling demonstrates superior prediction results and is more suitable for landslide susceptibility evaluation in this area. [Conclusion] The non-landslide sample optimization strategy based on CAE and the ResNet-CBAM evaluation model effectively improve the accuracy of landslide susceptibility evaluation. The research method and experimental results provide valuable theoretical support and scientific guidance for landslide prevention and control in Wanzhou District.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-09-24
  • 最后修改日期:2024-12-15
  • 录用日期:2024-12-16
  • 在线发布日期:
  • 出版日期: