面向山区公路弃渣场滑坡风险管控的“天空地”一体化智慧监测研究
作者:
作者单位:

1.西南林业大学林学院;2.云南今禹生态工程咨询有限公司;3.西南林业大学大数据与智能工程学院;4.西南林业大学土木工程学院

中图分类号:

U417.5;TD171.1-171.9

基金项目:

云南省基础研究计划面上项“基于多源遥感的城市植被三维绿量定量计测及时空分布格局研究”(202101AT070039)


Research on " space-air-ground "Intelligent Monitoring for Landslide Risk Control in Mountainous Highway Waste Disposal Areas
Affiliation:

College of Big Data and Intelligent Engineering,Southwest Forestry University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • | | | |
  • 文章评论
    摘要:

    [目的]山区公路弃渣场因其固废特性,存在诸多不同类型的安全隐患,增加了地质灾害风险的同时,还会给高速公路及下游地区带来潜在性危险。[方法] 本文选取宣曲高速公路(38#、41#和45#)弃渣场作为研究对象,构建基于现代监测技术与网络通信技术的实时动态弃渣场滑坡安全预警监测平台。利用卫星遥感技术、无人机摄影测量技术和地面传感器协同监测方法,对2015 ~2024年进行多源、多时相弃渣场边坡地物变化特征分析与地表形变演化监测,并结合累计变形和形变速率判据开展滑坡风险的预警判定。[结果]①对比不同时期的卫星影像得出扰动范围内的弃渣场植被已逐渐恢复生长,38#、41#和45#弃渣场整体植被覆盖面积相比2018年平均增长了50%。②经计算得出38#和41#弃渣场的实际扰动面积仅超出设计扰动面积的0.04〖 hm〗^2 和0.50 〖hm〗^2,而45#弃渣场扰动范围保持不变。同时确定弃渣量、扰动面积、最大堆高、坡度和坡比均符合滑坡体稳定要求,表明各弃渣场边坡整体保持稳定状态,发生滑坡风险的可能性较低。③GNSS监测结果显示各监测点总平均变形速率V_t<7〖 mm?d〗^(-1),其中41#JCD3-高程方向累计变形达到最大值1815.4 mm,处于累计变形判据注意级预警的临界区间内,滑坡体形变呈下降趋势,发生滑坡风险的可能性降低。[结论]利用预警判定方法监测出各弃渣场综合为I级滑坡预警级别,当位移累计量达到预设阈值时即触发预警系统,验证了“天空地”一体化智慧监测结果的有效性。本研究可为弃渣场滑坡风险的监测、预警及管控措施提供重要参考。

    Abstract:

    [Objective] The characteristics of solid waste in mountain road waste disposal areas has caused various safety hazards, including landslide, debris flow, surface subsidence, and so on, posing risks to motorway and downstream regions. [Methods] In this study, Xuanqu Expressway ( 38#, 41# and 45# ) waste disposal areas were selected as the research object, and a real-time dynamic waste disposal areas landslide safety early warning and monitoring platform were constructed using modern monitoring technology and network communication technology. Integrated satellite remote sensing technology, unmanned aerial photogrammetry with ground sensors, this work analyzed the pattern of slope feature variation and surface deformation in the waste disposal area from 2015 to 2024 at multi-spatial and multi-temporal scale. In addition, the early warning of landslide risk was determined utilizing the evidence of cumulative deformation and deformation rate. [Results] ① The results indicated that the vegetation of the waste disposal areas within the disturbed area has gradually regained recovered, and the overall vegetation coverage of waste disposal areas in 38#, 41# and 45# has increased by an average of 50% from 2018 to 2024. ② The actual disturbed area of 38# and 41# waste disposal areas was only 0.04 beyond the designed disturbed area, while the disturbed range of 45# waste disposal area remained unchanged. Furthermore, the amount of slag and disturbed area, the maximum pile height, slope and slope ratio were in line with the stability requirements of landslides, indicating that the overall slopes of the waste disposal area maintain a stable state, and the possibility of landslide risk was low. ③ The total average deformation rate of each monitoring point shown that the cumulative deformation in the direction of 41#JCD3-elevation reached a maximum value of 1815.4 mm, which was in the critical interval of the cumulative deformation criterion of the attention level warning, and the landslide deformation exhibited a decreasing trend. The likelihood of the occurrence of landslide risk was reduced. [Conclusion] Based on the early warning judgment method, the landslide warning level of different waste disposal areas was I level, and when the cumulative amount of displacement reached the preset threshold that triggered the early warning system, verifying effectively the 'space-sky-earth' integration of intelligent monitoring performance. This study provides an essential reference for the monitoring, early warning, and control measures for the landslide risk of waste disposal areas.

    参考文献
    [1] 叶咸, 陈华斌, 吴铸, 等. 山区高速公路路堑高边坡工程施工安全总体风险评估技术探讨 [J]. 公路, 2018, 63(03): 42-7.YE Xian, CHEN Wuabin , WU Zhu, et al. Study of the overall risk asse ssment method for the construction safety of high cut slope o f highway in mountainous area [J]. Highways, 2018, 63(03): 42-7.
    [2] 张志兰, 刘益军, 罗力, 等. 基于遥感影像的弃渣场规划后评价研究—以重庆绕城高速公路北碚区段为例 [J]. 水利技术监督, 2019, (05): 262-6.ZHANG Zhilan, LIU Yijun, LUO Li, et al. Study on post-planning evaluation of disposal site based on remote sensing imagery—taking beibei district section of Chongqing bypass expressway as an example [J]. Water Technology Supervision, 2019, (05): 262-6. ( in Chinese)
    [3] 叶咸, 陈文, 张新民, 等. 山区高速公路弃渣场工程安全稳定监测方法 [J]. 中外公路, 2021, 41(06): 20-6.YE Xian, CHEN Wen, ZHANG Xinming, et al. Safety and stability monitoring methods for mountain highway disposal site projects [J]. Chinese and Foreign Highways, 2021, 41(06): 20-6. ( in Chinese)
    [4] 唐彦东, 张佳丽, 于汐, 等. 灾害间接经济损失评估研究综述 [J]. 自然灾害学报, 2023, 32(06): 1-11.TANG Yandong, ZHANG Jiali, YU Xi, et al. Review on disaster indir ect economic loss assessment [J]. Journal of Natural Disasters,2023,32( 06) : 1-11. ( in Chinese)
    [5] YAO J, YAO X, LIU X. Landslide detection and mapping based on SBAS-InSAR and PS-InSAR: A case study in Gongjue County, Tibet, China [J]. Remote Sensing, 2022, 14(19): 4728.
    [6] PRADHAN B, MEZAAL M. Data mining-aided automatic landslide detection using airborne laser scanning data in densely forested tropical areas [J]. Korean Journal of Remote Sensing, 2018.
    [7] GONG C, LEI S, BIAN Z, et al. Analysis of the development of an erosion gully in an open-pit coal mine dump during a winter freeze-thaw cycle by using low-cost UAVs [J]. Remote Sensing, 2019, 11(11): 1356.
    [8] T?R?K á, B?G?LY G, SOMOGYI á, et al. Application of UAV in topographic modelling and structural geological mapping of quarries and their surroundings—delineation of fault-bordered raw material reserves [J]. Sensors, 2020, 20(2): 489.
    [9] XIAO R, SHEN W, FU Z, et al. The application of remote sensing in the environmental risk monitoring of tailings pond: A case study in Zhangjiakou area of China; proceedings of the Earth Resources and Environmental Remote Sensing/GIS Applications III, F, 2012 [C]. SPIE.
    [10] LEE S, CHOI Y. Reviews of unmanned aerial vehicle (drone) technology trends and its applications in the mining industry [J]. Geosystem Engineering, 2016, 19(4): 197-204.
    [11] REN H, ZHAO Y, XIAO W, et al. A review of UAV monitoring in mining areas: Current status and future perspectives [J]. International Journal of Coal Science Technology, 2019, 6: 320-33.
    [12] 胡博文, 李予红, 张聚斌. 无人机遥感3D建模在露天矿山环境综合治理勘查设计中的应用 [J]. 桂林理工大学学报, 2020, 40(04): 726-34.HU Bowen, LI Yuhong, ZHANG Jubin. Application of UAV remote sensing g 3D modeling in exploration and design of open mine environment comprehensive treatment [J]. Journal of Guilin University of Technology, 2020, 40(04): 726-34. ( in Chinese)
    [13] 陈宙翔, 叶咸, 张文波, 等. 基于无人机倾斜摄影的强震区公路高位危岩崩塌形成机制及稳定性评价 [J]. 地震工程学报, 2019, 41(01): 257-67+70.CHEN Zhouxiang, YE Xian, ZHANG Wenbo, et al. Formation mechanism analysis and stability evaluation of dangerous rock collapses based on the oblique photography by unmanned aerial vehicles [J]. ( in Chinese)
    [14] 豆红强, 黄思懿, 简文彬, 等. 基于遥感数据的闽东南山区公路滑坡快速识别技术研究 [J]. 自然灾害学报, 2023, 32(01): 217-27.DOU Hongqiang, HUANG Siyi, JIAN Wenbin, et al. Research on rapid identification technology of highway landslide in mountainous areas of southeast Fujian based on remote sensing data [J]. Journal of Earthquake Engineering, 2023, 32(01): 217-27. ( in Chinese)
    [15] ADAMCOVá D, BARTO? S, OSINSKI P, et al. Analytical modelling of MSW landfill surface displacement based on GNSS monitoring [J]. Sensors, 2020, 20(21): 5998.
    [16] PETERNEL T, JAN?A M, ?EGINA E, et al. Recognition of landslide triggering mechanisms and dynamics using GNSS, UAV photogrammetry and in situ monitoring data [J]. Remote Sensing, 2022, 14(14): 3277.
    [17] YAO W, LI C, GUO Y, et al. Short-term deformation characteristics, displacement prediction, and kinematic mechanism of Baijiabao landslide based on updated monitoring data [J]. Bulletin of Engineering Geology and the Environment, 2022, 81(9): 393.
    [18] 许强, 董秀军, 李为乐. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警 [J]. 武汉大学学报(信息科学版), 2019, 44(07): 957-66.XU Qiang, DONG Xiujun, LI Weile. Integrated space-air-ground early detection,monitoring and warning system for potential catastrophic geohazards [J]. Journal of Wuhan University (Information Science Edition), 2019, 44(07): 957-66. ( in Chinese)
    [19] 沈楠. 基于GNSS与加速度计融合的建筑物形变监测关键技术研究 [J]. 测绘学报, 2023, 52(08): 1414.SHEN Nan. Research on key technologies of building deformation monitoring based on the fusion of GNSS and accelerometer [J]. Journal of Surveying and Mapping, 2023, 52(08): 1414.
    [20] 黄观文, 陈孜, 徐永福. 膨胀土边坡GNSS实时监测技术 [J]. 测绘学报, 2023, 52(11): 1873-82.HUANG Guanwen, CHEN Zi, XU Yongfu. GNSS realtime monitoring technology of expansive soil slope [J]. Journal of Surveying and Mapping, 52(11): 1873-82. ( in Chinese)
    [21] 上海岩土工程勘察设计研究院有限公司. 基坑工程施工监测规程 [M]. 基坑工程施工监测规程, 2006.Construction Monitoring Procedures for Foundation Pit Engineering. Construction Monitoring Procedures for Foundation Pit [M]. ShangHai: China Geotechnical Engineering Survey and Design Institute Co., Ltd., 2006.
    [22] 交通运输部安全与质量监督管理司组织编写. 高速公路路堑高边坡工程施工安全风险评估指南:试行 [M]. 高速公路路堑高边坡工程施工安全风险评估指南:试行, 2015:3-4.Department of Safety and Quality Supervision, Ministry of Transport of PRC. Guidelines of construction safety risk assessment for cut slopes of expressway[M]. Beijing: China Communications Press Co., Ltd., 2015: 3-4.
    [23] 宿林, 张帅. 基于GNSS的滑坡自动化监测应用分析 [J]. 地理空间信息, 2023, 21(02): 122-4+52.SU Lin, ZHANG Shuai. Application of landslide automatic monitoring based on GNSS [J]. Geospatial Information, 2023, 21(02): 122-4+52. ( in Chinese)
    [24] 徐江桥, 张洪奎, 刘道乾, 等. 北斗卫星微位移监测系统在油气管道地质灾害监测预警中的应用 [J]. 矿产勘查, 2020, 11(12): 2803-8.XU Jiangqiang, ZHANG Honggui, LIU Daoqian, et al. Application of Beidou satellite micro-displacement monitoring system in monitoring and warning of geological hazards in oil and gas pipelines [J]. Mineral Exploration, 2020, 11(12): 2803-8. ( in Chinese)
    [25] 张永强, 毛彦龙, 白子龙. 降雨对低速滑坡形成机制的研究 [J]. 甘肃科学学报, 2019, 31(03): 85-91.ZHANG Yongqiang, MAO Yanlong, BAI Zilong. Research on formation mechanism of low-speed landslide caused by rainfall [J]. Gansu Science Journal, 2019, 31(03): 85-91. ( in Chinese)
    [26] 黄智杰, 沈佳, 简文彬, 等. 基于XGBoost模型的降雨诱发阶跃型滑坡位移预测 [J]. 自然灾害学报, 2023, 32(02): 217-26.HUANG Zhijie, SHEN Jia, JIAN Wenbin, et al. Displacement prediction of rainfall-induced step-like landslide based on XGBoost model [J]. Journal of Natural Disasters, 2023, 32(02): 217-26. ( in Chinese)
    [27] 廖军, 邓涛, 周越良, 等. 降雨作用下第四系堆积体路堤稳定性 [J]. 科学技术与工程, 2021, 21(23): 10090-7.LIAO Jun, DENG Tao, ZHOU Yueliang, et al. Stability of quaternary accumulation embankment under rainfall [J]. Science, Technology and Engineering, 2021, 21(23): 10090-7. ( in Chinese)
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文
分享
文章指标
  • 点击次数:19
  • 下载次数: 0
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2024-08-18
  • 最后修改日期:2024-12-03
  • 录用日期:2024-12-03