青海湟水流域潜在地质灾害识别与易发性评价
DOI:
作者:
作者单位:

青海大学 地质工程系

作者简介:

通讯作者:

中图分类号:

基金项目:

青海省湟水流域潜在地质灾害风险识别与监测预警关键技术研究与应用


Identification and Susceptibility Evaluation of Potential Geological Hazards in Huangshui Basin of Qinghai Province
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    [目的]明确湟水流域地质灾害空间分布特征与规律,为防灾减灾提供数据支撑与科学依据。[方法]通过小基线子集干涉测量 (Small Baseline Subset Interferometric Synthetic Aperture Radar, SBAS-InSAR)技术识别地质灾害点,结合地形因素、地质因素、环境因素、气象因素、人类活动因素进行灾害空间分布规律分析,建立逻辑回归(Logistic Regression, LR)—频率比(Frequency Response, FR)模型并检验,利用返回概率值进行易发性评价。[结果]青海湟水流域主要灾害种类包括滑坡、崩塌和不稳定斜坡。滑坡与不稳定斜坡通常发育于坡度较缓的山坡上,对山体下方交通、居民安全构成威胁,还可能阻塞河流,形成堰塞湖,进一步加剧灾害风险;崩塌多发育在岩石结构较为疏松或风化严重的陡峭山壁,对下方的居民区和交通线路构成威胁。(1)研究区2425 — 3650m高程区间的地质灾害分布较多,东北向为地质灾害易发坡向;地质灾害易发性随归一化植被指数(Normalized Digital Vegetation Index , NDVI)增加而降低,随坡度、地形起伏度、日降水量增加而升高,随距断层距离增加而减少。(2)湟水流域高易发区及较高易发区,面积约5937.60km2,占研究区总面积约38.78%,主要集中在湟水流域南、北边缘地区,湟中、大通、海晏交界处,以及建筑区周边边坡上。(3)对评价结果进行检验,模型预测性能受试者特征曲线(Receiver Operating Characteristic Curve, ROC曲线)线下面积(Area Under Curve, AUC)为0.787,易发区由高至低FR逐级减小,与实际灾害点的分布具有良好的一致性。(4) 断层核密度为湟水流域地质灾害发育的主控因子,坡向、地形起伏度、道路核密度次之,剖面曲率对地质灾害发育影响最小。[结论](1)利用SBAS-InSAR技术能有效识别湟水流域潜在地质灾害,LR-FR模型获得的易发性评价结果可靠。(2)湟水流域地质灾害易发区的分布具有明显的空间差异性,主要分布在海拔较高、植被覆盖率较低、降雨量较大、距离断层近的地区,断层核密度为地质灾害易发性的主控因子。(3)湟水流域的地质灾害具有多发性、突发性和高风险性的特点,给当地居民生活、区域经济发展及生态环境带来了严重的影响。因此,对其进行监测、预警和防治工作显得尤为重要。

    Abstract:

    [Objective] To clarify the spatial distribution characteristics and laws of geological disasters in Huangshui Basin, and to provide data support and scientific basis for disaster prevention and reduction. [Methods] Geological hazard sites were identified by Small Baseline Subset Interferometric Synthetic Aperture Radar (SBAS-InSAR). Combining topographic factors, geological factors, environmental factors, meteorological factors and human activities, the spatial distribution law of disasters was analyzed, and a Logistic Regression (LR) -frequency Response (FR) model was established and tested. The return probability value was used to evaluate the susceptibility. [Results] The main disasters in the Huangshui watershed of Qinghai Province include landslide, collapse and unstable slope. Landslides and unstable slopes usually develop on gently sloping slopes, posing a threat to the safety of traffic and residents below the mountain. They may also block rivers and form barrier lakes, further aggravating disaster risks. The collapse mostly develops in the steep mountain walls with relatively loose rock structure or severe weathering, posing a threat to the residential areas and traffic lines below. (1) The distribution of geological hazards in the area of 2425-3650m elevation is more, and the northeast direction is the slope direction of geological hazards. Normalized Digital Vegetation Index (NDVI) decreased with the increase of geological hazards, increased with the increase of slope, relief and daily precipitation, and decreased with the increase of distance from the fault. (2) High-prone and slightly high-prone areas in Huangshui Basin, covering an area of about 5937.60km2, accounting for about 38.78% of the total area of the study area, mainly concentrated in the south and north border areas of Huangshui Basin, Huangzhong, Datong, Haiyan junction, and the surrounding slope of the construction area. (3) The evaluation results were tested. The Area Under Curve (AUC) of Receiver Operating Characteristic Curve (ROC curve) of model prediction performance was 0.787. The FR in the prone area decreases step by step from high to low, which is in good agreement with the distribution of actual disaster points. (4) Fault core density is the main control factor of geological hazard development in Huangshui Basin, followed by slope direction, relief degree and road core density, and section curvature has the least influence on geological hazard development. [Conclusion](1) SBAS-InSAR technology can effectively identify potential geological hazards in Huangshui basin, and the susceptibility evaluation results obtained by LR-FR model are reliable. (2) The distribution of geological disaster prone areas in the Huangshui Basin has obvious spatial differences, mainly distributed in the areas with higher elevation, lower vegetation coverage rate, larger rainfall and close to the fault, and the fault core density is the main control factor of geological disaster susceptibility. (3) The geological disasters in the Huangshui Basin are characterized by multiple, sudden occurrence and high risk, which have brought serious impact on local people's life, regional economic development and ecological environment. Therefore, the monitoring, early warning and prevention of these disasters are particularly important.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-10-12
  • 最后修改日期:2024-02-04
  • 录用日期:2024-02-23
  • 在线发布日期:
  • 出版日期: