Abstract:[Objective] The data that could provide a reference basis for the application of an anchor-reinforced vegetation system (ARVS) were obtained to protect newly excavated slopes with expansive soil.[Methods] Field tests were conducted on a newly excavated bare slope, vegetated slope, and ARVS-protected slope of expansive soil in Nanning City. Soil moisture content, soil temperature, and anchor shaft force of the slope were monitored to study the depth of atmospheric influence of ARVS on a newly excavated expansive soil slope under atmospheric action.[Results] The depth of atmospheric influence on the bare slope developed the fastest, developing to about 2.4 m in a short time. The depth of atmospheric influence on the ARVS-protected slope developed the slowest. The depth of atmospheric influence was less than 1.8 m after repeated rainfall events. ARVS restrained the expansive effect and limited the development of expansive and shrinking fissures, together with vegetation and high performance turf reinforcement mats (HPTRM), ARVS slowed down the development of the depth of atmospheric influence to the interior. As the depth of atmospheric influence developed to the deep part of the soil body, the neutral point moved deeper.[Conclusion] The vegetation, HPTRM, and anchor rod of ARVS interacted with each other to limit the development of atmospheric influence depth on a newly excavated expansive soil slope by restraining the expansive effect.