Abstract:[Objective] Carbon storage and its spatio-temporal distribution in the Qilian Mountain National Park, and the impact of land use change on terrestrial ecosystem carbon storage were analyzed in order to provide a scientific basis for improving the ecological value of national parks and adjusting ecological engineering and land management policies.[Methods] The land use dynamic index and land use conversion matrix were used to quantitatively analyze land use changes before and after ecological destruction and restoration in the national park. Then, remote sensing image data of land use and carbon density were used as operating data in the carbon module of the InVEST model to calculate the change in carbon storage induced by land use change.[Results] ① The carbon storage values for the Qilian Mountain National Park in 1980, 1990, 2000, 2010, and 2018 were 9.07×108, 9.07×108, 9.07×108, 9.16×108, 9.17×108 t, showing a trend of "decrease first and then increase", with a cumulative increase of 9.86×106 t; ② The spatial distribution of carbon storage was related to land use types. The areas with high carbon storage were mainly located in the east section and east of the middle section of the national park, and corresponded to forest. The areas with low carbon storage were mainly concentrated in the west section and west of the middle section, and corresponded to unused land. ③ Land use changes under the positive ecological evolution that occurred from 1980 to 2018 (i.e., farmland, grassland, and unused land converted to forest; farmland and unused land converted to grassland; and unused land converted to water) were the main reasons for the increase in national park carbon storage.[Conclusion] The positive evolution of ecosystems should be promoted by consolidating ecological engineering, focusing on grassland resource protection, and adjusting land management policies in order to optimize land use structure and to increase terrestrial ecosystem carbon storage for the Qilian Mountain National Park.