Abstract:[Objective] The variation in soil respiration and its components in a vineyard in an arid area in Northwest China were analyzed and the relationship between soil temperature, soil water content, and soil respiration was studied in order to provide some reference for the estimation of soil carbon emission and the development of featured agriculture in arid areas of Northwest China.[Methods] Soil respiration and environmental parameters of a vineyard at South Lake oasis of Dunhuang City, Gansu Province were observed using an LI-8 100 A soil respiration measurement system and automatic meteorological station from June to December 2019, and soil respiration components were distinguished by root exclusion methods.[Results] ① During the observation period, the soil respiration rate in the vineyard reached its maximum on July 3. The soil respiration rate fluctuated significantly from June to September during the growing season, while it decreased gradually from October to December during the non-growing season. Heterotrophic respiration was the main component in this area, and the average contribution rate of heterotrophic respiration was approximately 65%. ② On an hourly scale, the relationship of hysteresis loops between soil respiration, heterotrophic respiration, and soil temperature was obvious because of the time lag effect. On a daily scale, soil respiration and heterotrophic respiration increased exponentially with the increase in soil temperature during the non-growing season (from October to December). However, irrigation and heavy rainfall could cause fluctuations in soil water content, interfering with the above exponential responses during the growing season (from June to September). ③ During the growing season (from June to September), soil respiration and its components had a quadratic function relationship. The optimal soil water content was approximately in the range of 8.1% to 9.9%. However, there was an exponential relationship from October to December during the non-growing season. The difference was mainly caused by the decrease in soil water content and soil temperature during the non-growing season. The vine branches were buried underground, which caused the heterotrophic and autotrophic respiration to decrease rapidly to a low value and then remain stable.[Conclusion] Soil respiration was regulated by soil temperature and soil water content. The two-factor model could explain the variation in soil respiration well during the non-growing season, but it only explained 32% of the variation during the growing season. Therefore, the multifactor model of soil respiration during the growing season should be further established to better simulate the variation during the growing season.