高寒草原土壤有机碳矿化对水氮添加的响应
作者:
中图分类号:

S154.1

基金项目:

国家重点研发计划"若尔盖退化高寒草地恢复关键过程研究"(2016YFC0501802);青海省国际合作项目"降水和氮沉降对高寒草原关键生态过程的协同影响机制"(2019-HZ-807)


Response of Soil Organic Carbon Mineralization to Water and Nitrogen Addition in Alpine Steppe
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [35]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    [目的] 研究不同水氮添加下的高寒草原土壤有机碳矿化过程,探讨土壤性质与土壤碳矿化的关系,为揭示全球变化背景下高寒草原土壤碳转化规律提供科学依据。[方法] 设置45%,60%,75%,90%的田间持水量(WHC)4个水分梯度和4个氮添加梯度(0,0.2,0.4,0.8 mg/g)进行室内培养,分析CO2浓度,测定土壤溶解性有机碳(DOC)、土壤微生物生物量碳(MBC)含量以及土壤酶活性。[结果] ①在水或氮添加范围内,土壤有机碳矿化量呈抛物线变化趋势,土壤碳矿化受水分调控更加敏感,氮添加对土壤碳矿化的影响依赖于水分添加量。②土壤水分从45%增加到60% WHC,加速了土壤中可溶性物质溶出,增加了有机碳矿化;施氮量从0 mg/g增加到0.4 mg/g,土壤有机碳含量、土壤微生物量碳含量呈上升趋势,刺激了土壤有机碳的矿化。③90%田间持水量WHC的高水分添加与45%田间持水量土壤水分下的高氮添加(0.8 mg/g)抑制高寒草原土壤碳矿化,高水分添加通过降低土壤通透性抑制有机碳矿化过程,高氮添加通过降低土壤DOC生物有效性、土壤MBC含量、土壤酶活来抑制土壤有机碳矿化过程,高氮添加对碳矿化的抑制作用在90% WHC条件下得到缓解。[结论] 随着未来氮沉降量与降雨量的持续增加,青藏高原高寒草原土壤有机碳的矿化作用可能会受到抑制,有利于高寒草原土壤有机碳积累。

    Abstract:

    [Objective] The mineralization processes of soil organic carbon under different water and nitrogen additions were studied to understand the relationship between the soil properties and carbon mineralization, and to provide scientific references for revealing the soil carbon conversion pattern in alpine steppe under global change.[Methods] A laboratory experiment was conducted with four different soil water contents (45%, 60%, 75%, 90% water-holding capacity, WHC) and four nitrogen levels (0, 0.2, 0.4, 0.8 mg/g). The following parameters were measured:CO2 concentration, dissolved organic carbon (DOC), microbial biomass carbon (MBC) content, and enzyme activity.[Results] ①Within the experimented range of water and nitrogen addition, carbon mineralization volume showed a parabolic pattern. Soil carbon mineralization was more sensitive to the addition of water and the effect of the nitrogen addition on soil carbon mineralization was dependent on the water content. ②Increasing the water content from 45 to 60% WHC led to a faster leaching of the soluble substances from the soil, indicating a greater carbon mineralization. The soil organic carbon and microbial biomass carbon also showed an upward trend with an increase of the nitrogen addition from 0 to 0.4 mg/g. ③The soil carbon mineralization was inhibited either with the high WHC(90%) or by the addition of a higher content of nitrogen (0.8 mg/g) at 45% WHC. The high water content led to a lower soil carbon mineralization by a reduction in the soil porosity; whereas the addition of a high nitrogen content (0.8 mg/g) led to the inhibition of the soil carbon mineralization process by decreasing the availability of the DOC of the soil, level of MBC in the soil, and activity of soil microbial enzyme. The carbon mineralization inhibition by high-content nitrogen addition was alleviated at a high WHC(90%).[Conclusion] The predicted continuous increase in nitrogen deposition and precipitation in the Tibet Plateau may inhibit the carbon mineralization processes of the alpine steppes and benefit the accumulation of soil organic carbon.

    参考文献
    [1] 杨红飞,穆少杰,孙成明,等.草地生态系统土壤有机碳估算研究综述[J].中国草地学报,2011,33(5):107-114.
    [2] Landman W.Climate change 2007:the physical science basis[J].South African Geographical Journal, 2010,92(1):86-87.
    [3] 谢迎新,张淑利,冯伟,等.大气氮素沉降研究进展[J].中国生态农业学报,2010,18(4):897-904.
    [4] Zhang Xiaolin, Tan Yulian, Zhang Bingwei, et al. The impacts of precipitation increase and nitrogen addition on soil respiration in a semiarid temperate steppe[J]. Ecosphere, 2017,8(1):e01655.
    [5] Gilliam F S, McCulley R L, Nelson J A. Spatial variability in soil microbial communities in a nitrogen-saturated hardwood forest watershed[J]. Soil Science Society of America Journal, 2011,75(1):280.
    [6] Gao Qiang, Hasselquist N J, Palmroth S, et al. Short-term response of soil respiration to nitrogen fertilization in a subtropical evergreen forest[J]. Soil Biology and Biochemistry, 2014,76:297-300.
    [7] Wang Yongsheng, Cheng Shulan, Fang Huajun, et al. Contrasting effects of ammonium and nitrate inputs on soil CO2 emission in a subtropical coniferous plantation of southern China[J]. Biology and Fertility of Soils, 2015,51(7):815-825.
    [8] 金孙梅,王英,侯光良,等.基于孢粉数据的全新世青藏高原降水定量重建[J].水土保持通报,2018,38(6):169-176.
    [9] Galloway J N, Dentener F J, Capone D G, et al. Nitrogen cycles:past,present,and future[J]. Biogeochemistry, 2004,70(2):153-226.
    [10] 赵雪雁,张钦,王亚茹,等.近55 a来青藏高原东部气候演变特征[J].干旱区研究,2015,32(6):1088-1096.
    [11] 徐丽,于书霞,何念鹏,等.青藏高原高寒草地土壤碳矿化及其温度敏感性[J].植物生态学报,2013,37(11):988-997.
    [12] 吴建波,王小丹.围封年限对藏北退化高寒草原植物群落特征和生物量的影响[J].草地学报,2017,25(2):261-266.
    [13] 赵景学,陈晓鹏,曲广鹏,等.藏北高寒植被地上生物量与土壤环境因子的关系[J].中国草地学报,2011,33(1):59-64.
    [14] 郝瑞军,李忠佩,车玉萍.水分状况对水稻土有机碳矿化动态的影响[J].土壤,2006,38(6):750-754.
    [15] 吴金水.土壤微生物生物量测定方法及其应用[M].北京:气象出版社,2006.
    [16] 陈愫惋.转基因棉花的Bt毒素在土壤中的分布及对土壤酶活性的影响[D]. 武汉:华中农业大学,2008.
    [17] 李平,郎漫,李煜姗,等.不同施肥处理对黑土硝化作用和矿化作用的影响[J].农业环境科学学报,2015,34(7):1326-1332.
    [18] 王丹,吕瑜良,徐丽,等.植被类型变化对长白山森林土壤碳矿化及其温度敏感性的影响[J].生态学报, 2013,33(19):6373-81.
    [19] 李伟,白娥,李善龙,等.施氮和降水格局改变对土壤CH4和CO2通量的影响[J].生态学杂志,2013,32(8):1947-1958.
    [20] Henriksen T. Nitrogen availability effects on carbon mineralization, fungal and bacterial growth, and enzyme activities during decomposition of wheat straw in soil[J]. Soil Biology and Biochemistry, 1999,31(8):1121-1134.
    [21] Carreiro M M, Sinsabaugh R L, Repert D A, et al. Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition[J]. Ecology, 2000,81(9):2359.
    [22] Michel K, Matzner E, Dignac M F, et al. Properties of dissolved organic matter related to soil organic matter quality and nitrogen additions in Norway spruce forest floors[J]. Geoderma, 2006,130(3/4):250-264.
    [23] Hagedorn F, Blaser P, Siegwolf R. Elevated atmospheric CO2 and increased N deposition effects on dissolved organic carbon:clues from δ13 C signature[J]. Soil Biology and Biochemistry, 2002,34(3):355-366.
    [24] 李银坤,陈敏鹏,梅旭荣,等.土壤水分和氮添加对华北平原高产农田有机碳矿化的影响[J].生态学报,2014,34(14):4037-4046.
    [25] 李永夫,姜培坤,刘娟,等.施肥对毛竹林土壤水溶性有机碳氮与温室气体排放的影响[J].林业科学,2010,46(12):165-170.
    [26] 刘浩宇,巩晟萱,王兵,等.阿尔泰山冷杉林下土壤有机碳矿化特征[J].水土保持通报,2016,36(1):327-331,336.
    [27] 张梦瑶,王冬雪,高永恒.高寒湿地水体溶解性碳氮磷对水位变化的响应[J].环境科学与技术,2017,40(12):25-31.
    [28] 朱培立,王志明,黄东迈,等.无机氮对土壤中有机碳矿化影响的探讨[J].土壤学报,2001,38(4):457-463.
    [29] DeForest J L, Zak D R, Pregitzer K S, et al. Atmospheric nitrate deposition and the microbial degradation of cellobiose and vanillin in a northern hardwood forest[J]. Soil Biology and Biochemistry, 2004,36(6):965-971.
    [30] Giroux H, Vidal P, Bouchard J, et al. Degradation of Kraft Indulin Lignin by Streptomyces viridosporus and Streptomyces badius[J]. Applied and Environmental Microbiology, 1988,54(12):3064-3070.
    [31] 赵彤,蒋跃利,闫浩,等.黄土丘陵区不同坡向对土壤微生物生物量和可溶性有机碳的影响[J].环境科学,2013,34(8):3223-3230.
    [32] Zhang Tianan, Chen Y H, Ruan Honghua. Global negative effects of nitrogen deposition on soil microbes[J]. The ISME Journal, 2018,12(7):1817-1825.
    [33] 张成霞,南志标.土壤微生物生物量的研究进展[J].草业科学,2010,27(6):50-57.
    [34] 徐阳春,沈其荣,冉炜.长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响[J].土壤学报,2002,39(1):83-90.
    [35] 肖新,朱伟,肖靓,等.适宜的水氮处理提高稻基农田土壤酶活性和土壤微生物量碳氮[J].农业工程学报,2013,29(21):91-8.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

朱灵,张梦瑶,高永恒.高寒草原土壤有机碳矿化对水氮添加的响应[J].水土保持通报,2020,40(1):30-37

复制
分享
文章指标
  • 点击次数:1057
  • 下载次数: 1110
  • HTML阅读次数: 0
  • 引用次数: 0
历史
  • 收稿日期:2019-08-23
  • 最后修改日期:2019-10-14
  • 在线发布日期: 2020-03-19