基于SCS-CN与MUSLE模型耦合的微地形侵蚀预测
DOI:
作者:
作者单位:

西北农林科技大学

作者简介:

通讯作者:

中图分类号:

S157

基金项目:

中国陕西省农业协同创新与推广联盟(LMR202204)


Micro-topography Erosion Prediction Based on the Coupling of the SCS-CN Model with MUSLE Model
Author:
Affiliation:

Fund Project:

Shaanxi Agricultural Collaborative Innovation and Extension Alliance, China (LMR202204)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有微尺度侵蚀研究主要聚焦在探索侵蚀发生的机制规律,而对具体微地形侵蚀预测方法研究不足的现状,本研究以黄土裸坡微地形为研究对象,提出根据地表实测径流(QT)和地表粗糙度(SR)对径流曲线法模型(SCS-CN)进行修正以预测径流量,并与修正通用土壤流失方程(MUSLE)耦合进行侵蚀量预测。结果表明:1)与原始SCS-CN模型径流量预测结果QO(R2=0.7056)相比,通过QT反算CN值的修正模型SCS-Q和通过SR修正模型SCS-SR的径流量QCN(R2=0.9338)和QSR(R2=0.7691)预测精度分别提高了32%和9%;2)在微地形条件下耦合模型精度与传统RUSLE因子组合模型相比有了明显提升,且相较SCS-Q与MUSLE的耦合模型(MUSLE-Q),SCS-SR与MUSLE的耦合模型(MUSLE-SR)表现出更高的预测精度(NSE ∈[0.50 , 0.94]);3)在微地形侵蚀量预测中,地表措施对耦合模型精度的影响(ΔNSE = 63%)显著大于雨强(ΔNSE = 52%)和坡度(ΔNSE = 40%);4)在微地形条件下,耦合模型的预测精度随降雨时间显著提高:降雨前期(20min前)精度较低(R2<0.5),而降雨后期(20min后)精度显著提升(R2>0.8)。研究成果为微地形侵蚀量的精确预测方法提供了参考。

    Abstract:

    Based on the research findings, the current status of micro-scale erosion studies predominantly focuses on exploring the mechanisms of erosion occurrence, while research on specific micro-topographic erosion prediction methods remains insufficient25. This study targets micro-topographies on loess bare slopes and proposes modifications to the Soil Conservation Service Curve Number (SCS-CN) model using measured surface runoff (QT) and surface roughness (SR) to predict runoff. The modified model is then integrated with the Modified Universal Soil Loss Equation (MUSLE) for erosion prediction. The results demonstrate:1)Compared to the original SCS-CN model’s runoff prediction result QO (R2=0.7056), the modified models—SCS-Q (using CN values back-calculated from QT and SCS-SR (modified via SR)—achieved runoff predictions QCN(R2=0.9338) and QSR (R2=0.7691), with accuracy improvements of ?32%? and ?9%?, respectively;2)In micro-topographic erosion prediction, Compared to traditional RUSLE factor combination models, the coupled models showed significant accuracy enhancement. The MUSLE-SR model (coupling SCS-SR with MUSLE) exhibited higher precision (NSE ∈ [0.50, 0.94]) than the MUSLE-Q model (coupling SCS-Q with MUSLE) (NSE ∈ [0.23, 0.94]);3)In micro-topographic erosion prediction, The influence of surface measures on the accuracy of the coupling model (ΔNSE = 63%) is significantly greater than that of rainfall intensity (ΔNSE = 52%) and slope (ΔNSE = 40%); 4)Under micro-topographic conditions, the prediction accuracy of coupled models ?increased significantly with rainfall duration?: accuracy was low in the early stage (before 20 min, R2<0.5) but improved markedly in the later stage (after 20 min, R2>0.8).These findings provide a methodological reference for precise micro-topographic erosion prediction.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-04-07
  • 最后修改日期:2025-06-23
  • 录用日期:2025-06-27
  • 在线发布日期:
  • 出版日期: