引用本文:
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 52次   下载 32 本文二维码信息
码上扫一扫!
分享到: 微信 更多
泥石流频发区典型乔灌植物根系的固土效应
陈文乐1,2, 杜鹃3, 方迎潮4, 王道杰1, 何松膛1,2, 兰惠娟1,2, 赵鹏1,2
1.中国科学院 水利部 成都山地灾害与环境研究所 山地灾害与地表过程重点实验室, 四川 成都 610041;2.中国科学院大学, 北京 100049;3.阿坝藏族羌族自治州水务局, 四川 阿坝藏族羌族自治州 624000;4.中石油西南管道公司, 四川 成都 610041
摘要:
[目的] 研究泥石流频发区云南省昆明市东川区蒋家沟两种典型生态修复物种新银合欢(Leucaena leucocephala)和马桑(Coriaria sinnica)的根系固土效应,为当地生物工程的应用及泥石流治理效益的评价提供理论依据和数据支撑。[方法] 通过根系挖掘法查明根系分布特征,开展根系拉伸试验分析单根抗拉特征,运用修正后的Wu-Waldron模型(RWM)计算两种植物根系对土壤抗剪强度的增加值。[结果] ①新银合欢和马桑的根面积比RAR均随着土壤深度的增加而减小。②新银合欢根系构型为垂直型,马桑根系构型为横走型。③新银合欢根系的抗拉强度与根径之间无明显规律性,马桑根系的抗拉强度与根径之间呈递减的对数函数关系。④新银合欢和马桑根系对土体抗剪强度增加值均随着土壤深度的增加而减少,新银合欢根系固土深度约为1.4 m,马桑根系固土深度约为0.6 m。[结论] 新银合欢和马桑根系均能显著发挥固土作用。由于根系构型、固土深度、固土方式等原因,二者的固土作用不同,可将二者结合种植,不仅有利于边坡的稳定,也可提高土体的抗冲性。
关键词:  泥石流  蒋家沟  新银合欢  马桑  固土效应
DOI:10.13961/j.cnki.stbctb.2019.05.005
分类号:X43;S157.2
基金项目:中国科学院战略性先导科技专项(A类)“美丽中国”(XDA23090403);国家自然科学基金项目“大规模灾害风险评估及综合调控原理和模式”(41790434);四川省国土资源厅“8.8”九寨沟地震灾区生态化地质灾害防治重大科技支撑研究课题“生态化泥石流灾害防治技术研究”(KJ-2018-24)
Soil Reinforcement Effect of Root Systems of Typical Plants in Areas with Frequent Debris Flow
Chen Wenle1,2, Du Juan3, Fang Yingchao4, Wang Daojie1, He Songtang1,2, Lan Huijuan1,2, Zhao Peng1,2
1.Key Laboratory of Mountain Hazards and Earth Surface Process, Institute of Mountain Hazards and Environment, Ministry of Water Resources, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China;2.University of the Chinese Academy of Sciences, Beijing 100049, China;3.Water Bureau of Aba Tibetan and Qiang Autonomous Prefecture, Aba Tibetan and Qiang Autonomous Prefecture, Sichuan 624000, China;4.PetroChina Southwest Pipeline Company, Chengdu, Sichuan 610041, China
Abstract:
[Objective] The soil reinforcement effect of root systems of Leucaena leucocephala and Coriaria sinnica was studied in Jiangjia gully, Dongchuan District, Kunming City, Yunnan Province in order to provide a theoretical basis and data support for the application of local biological and engineering methods to utilize the control benefit of debris flow.[Methods] The distribution characteristics of root systems were identified using the root digging method, the root tensile characteristics were analyzed with the root tensile test, and the added value of the root systems of the two plant species to the soil shear strength was calculated using the Wu-Waldron model (RWM).[Results] ① The root area ratio of both L. leucocephala and C. sinnica decreased with an increase in soil depth. ② The root configurations of L. leucocephala and C. sinnica were vertical type and transverse type, respectively. ③ The relationship between the tensile strength and root diameter of C. sinnica roots was a decreasing logarithmic function, whereas there was no obvious regularity between tensile strength and root diameter for L. leucocephala roots. ④ The added value of the shearing strength of both L. leucocephala and C. sinnica roots decreased with an increase in soil depth. The depth of soil reinforcement of L. leucocephala and C. sinnica roots was approximately 1.4 m and 0.6 m, respectively.[Conclusion] Both root systems of L. leucocephala and C. sinnica played a significant role in soil fixation. Because the root architecture, soil reinforcement depth, and soil reinforcement technique of these two plants were different, utilizing these two species together can improve slope stability and soil anti-scourability.
Key words:  debris flow  Jiangjia gully  Leucaena leucocephala  Coriaria sinnica  soil reinforcement effect