引用本文:
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 26次   下载 25 本文二维码信息
码上扫一扫!
分享到: 微信 更多
黑土农田冻结-融化期土壤剖面温度变化特征
王一菲1, 郑粉莉1,2, 周秀杰3, 覃超1, 富涵1, 左小锋1, 刘刚1, 张加琼1
1.西北农林科技大学 水土保持研究所, 黄土高原土壤侵蚀与旱地农业国家重点实验室, 陕西 杨凌 712100;2.中国科学院 水利部水土保持研究所, 陕西 杨凌 712100;3.黑龙江省气象数据中心, 黑龙江 哈尔滨 150000
摘要:
[目的]研究东北黑土区农地土壤温度变化特征,为冻融作用程度量化分析和冻融作用对土壤侵蚀影响提供基础数据。[方法]利用2015—2018年黑龙江省宾州河流域典型农地2 m土壤剖面11月至翌年4月土壤温度观测资料以及气温数据,分析了冻结和融化过程中土壤温度变化特征以及土壤温度对气温变化的响应,确定土壤冻结与融化过程中耕层土壤冻融循环次数。[结果]11月至翌年2月的冻结期,土壤温度随土层深度的增加而增加;3—4月份土壤温度梯度发生反向改变,当土壤完全消融后,土壤温度随着土层深度的增加而递减,土壤最大冻结深度为80 cm。研究结果还表明,0—60 cm土层的土壤温度均与气温呈极显著正相关,其相关性随土壤深度增加而减小;而80 cm以下土层,土壤温度均与气温呈负相关。[结论]研究区土壤冻结和融化过程分别呈单向冻结和双向融化现象,冻融循环主要发生在农地耕层0—20 cm土层,其年最大冻融循环次数分别为12次和7次,为设计黑土冻融循环模拟试验提供了数据支持。
关键词:  土壤温度  冻融循环  气温  东北黑土区
DOI:10.13961/j.cnki.stbctb.2019.03.010
分类号:S157.1
基金项目:国家自然科学基金面上项目“黑土区多种外营力互作的坡面侵蚀过程与机制”(41571263);国家重点研发计划战略性国际科技创新合作重点专项“黑土侵蚀防治机理与调控技术”(2016YFE0202900)
Soil Profile Temperature Variation in Farmlands During Freeze-thaw Period in Mollisol Region
Wang Yifei1, Zheng Fenli1,2, Zhou Xiujie3, Qin Chao1, Fu Han1, Zuo Xiaofeng1, Liu Gang1, Zhang Jiaqiong1
1.Institute of Soil and Water Conservation, State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Northwest A & F University, Yangling, Shaanxi 712100, China;2.Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China;3.Heilongjiang Meteorological Data Center, Harbin, Heilongjiang 150000, China
Abstract:
[Objective] This study explored the characteristics of soil temperature changes in farmlands of Mollisol region in Northeast China in order to provide basic data for quantifying the degree of freeze-thaw action and its impacts on soil erosion.[Methods] Based on the data of soil temperature in 2 m soil profile and air temperature from November to next April in 2015-2018 at the typical farmland in Binzhou River basin of Heilongjiang Province, we analyzed the characteristics of soil temperature variation and its responses to air temperature changes during freeze-thaw processes and freeze-thaw times in plough layer in farmlands.[Results] The soil temperature increased with the increase of soil depth from November to next February, while declined with the increase of soil depth when the soil was completely melted. The maximum frozen depth was 80 cm in farmlands of the research region. Meanwhile, there was a significant positive correlation between soil temperature in 0-60 cm depth and air temperature, and this correlation decreased with the increase of soil depth. In contrast, soil temperature under 80 cm depth was negatively correlated with air temperature.[Conclusion] There was a unidirectional freezing and bidirectional thawing in the study area. The freeze-thaw action mainly occurred at 0-20 cm in the topsoil layer of farmland, both maxinum freeze-thaw cycle times were 12 and 7, respectively, which provided the scientific basis for the design of simulated Mollisol freeze-thaw cycle experiments.
Key words:  soil temperature  freeze-thaw cycle  air temperature  Mollisol region in Northeast China