引用本文:
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 146次   下载 111 本文二维码信息
码上扫一扫!
分享到: 微信 更多
面向对象的无人机影像水体变化监测方法
秦慧杰1,2, 高磊1,2, 梁文广3, 欧阳晓1
1.江苏省测绘工程院, 江苏 南京 210013;2.卫星测绘技术与应用国家测绘地理信息局重点实验室, 江苏 南京 210013;3.江苏省水利科学研究院湖泊所, 江苏 南京 210017
摘要:
[目的]针对大多无人机影像仅有红、绿、蓝3个波段的特点,提出一种利用纹理特征提取水体并进行变化监测的方法,为水利部门了解水体面积变化情况提供技术支持。[方法]首先利用易康软件对无人机影像进行多尺度分割,形成影像像斑,再计算影像像斑的角二阶矩、均值、熵等纹理特征,将这些纹理特征作为影像波段进行组合,从而突出水体,最后通过ISO分类的方法提取出水体,将不同时期提取的水体进行叠置分析,得到水体的变化区域。[结果]通过选择不同的区域进行试验,水体的提取精度和变化检测精度均达90%以上。[结论]面向对象的无人机影像水体变化监测方法可有效提高水体变化监测的效率,节约人工作业量。
关键词:  无人机  水体特征  波段合成  变化监测
DOI:10.13961/j.cnki.stbctb.2018.05.041
分类号:P208
基金项目:江苏省水利科技项目“基于无人机航空影像的水域变化自动监测研究”(2015035);江苏省测绘地理信息科研项目面向地理国情的卷积神经网络遥感影像分类研究(JSCHKY201618)
Water Change Monitoring by Object-oriented Detection Based on Unmanned Aerial Vehicle Image
QIN Huijie1,2, GAO Lei1,2, LIANG Wenguang3, OUYANG Xiao1
1.Engineering Surveying and Mapping Institute of Jiangsu Province, Nanjing, Jiangsu 210013, China;2.Key Laboratory of Satellite Mapping Technology and Application, NASG, Nanjing, Jiangsu, 210013, China;3.Lake Research Institute, Hydraulic Research Institute of Jiangsu Province, Nanjing, Jiangsu 210017, China
Abstract:
[Objective] Due to the fact that there are only three bands (red, green and blue) in most UAV(unmanned aerial vehicle)images, a method of extracting water body and monitoring water changes based on texture feature is proposed in order to provide technical support for water conservancy department.[Methods] We used eCognition software to divide the UAV images into multiple scales, and from the image object firstly. The angular second-order moment, mean, entropy and other texture features of the image object was then calculated. These texture features was combined as the image band to highlight the water body. Finally, the water body was extracted by ISO classification method, and the water body extracted from different periods was analyzed to obtain the change area of the water body.[Results] By testing in different regions, the accuracy of the water extraction and detection for water change was above 90%.[Conclusion] The proposed method can effectively improve the efficiency of the water body change monitoring, and reduce the amount of manual labor.
Key words:  unmanned aerial vehicle  water characteristics  band synthetic  change monitoring